Clean electricity generation paired with the first grid-level sodium battery energy storage system can bring costs down to just $0.028 per kWh. The 10 MWh storage capacity is executed with sodium-ion cells that can be charged in just 12 minutes.
I’m curious what the temperature resiliency is for sodium-ion batteries. I had a power outage recently where I was relying on a lithium-ion battery. As the temperature in the house plunged, it because so inefficient that charging a single phone overnight drained a quarter of the battery.
It was slightly above freezing in the house, so definitely not operating at peak efficiency. From a brief search, it looks like sodium-ion does have a similar temperature sensitivity, though it may be to a different degree.
If I’m not mistaken, those portable power stations with AC inverters consume power even when not in use. You probably should use the DC output wherever possible.
I’m curious what the temperature resiliency is for sodium-ion batteries. I had a power outage recently where I was relying on a lithium-ion battery. As the temperature in the house plunged, it because so inefficient that charging a single phone overnight drained a quarter of the battery.
Source: https://batteryuniversity.com/article/bu-502-discharging-at-high-and-low-temperatures
I don’t have any data on sodium-ion.
It was slightly above freezing in the house, so definitely not operating at peak efficiency. From a brief search, it looks like sodium-ion does have a similar temperature sensitivity, though it may be to a different degree.
If I’m not mistaken, those portable power stations with AC inverters consume power even when not in use. You probably should use the DC output wherever possible.